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LOCAL STATISTICS OF LATTICE POINTS ON THE

SPHERE

JEAN BOURGAIN, PETER SARNAK AND ZEÉV RUDNICK

1. Statement of results

The set of integer solutions (x1, x2, x3) to the equation

(1.1) x21 + x22 + x23 = n

has been much studied. However it appears that the spatial distribution
of these solutions at small and critical scales as n → ∞ have not been
addressed. The main results announced below give strong evidence to the
thesis that the solutions behave randomly. This is in sharp contrast to what
happens with sums of two or four or more squares.

First we clarify what we mean by random. For a homogeneous space like
the k-dimensional sphere Sk with its rotation-invariant probability measure
σ̂, the binomial process is what you get by placing N points P1, . . . , PN on
Sk independently according to σ̂. We are in interested in statistics, that
is functions f(P1, . . . , PN ), which have a given behaviour almost surely, as
N → ∞. If this happens we say that this behaviour of f is that of random
points. We shall also contrast features of random points sets with those of
“rigid” configurations, by which we mean points on a planar lattice, such as
the honeycomb lattice.

A celebrated result of Legendre/Gauss asserts that n is a sum of three
squares if and only if n 6= 4a(8b+ 7). Let E(n) be the set of solutions

(1.2) E(n) = {x ∈ Z3 : |x|2 = n}
and set

(1.3) N = Nn := #E(n)
The behaviour of Nn is very subtle and it was a fine achievement in the
1930’s when it was shown that Nn goes to infinity with n (assuming say
that n is square-free; if n = 4a then there are only six solutions). It is

known that Nn ≪ n1/2+o(1) and if there are primitive lattice points, that
is x = (x1, x2, x3) with gcd(x1, x2, x3) = 1 (which happens if an only if
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n 6= 0, 4, 7 mod 8) then there is a lower bound of Nn ≫ n1/2−o(1). This
lower bound is ineffective and indicates that the behaviour of Nn is still far
from being understood [17].

The starting point of our investigation is the fundamental result conjec-
tured by Linnik (and proved by him assuming the Generalized Riemann
Hypothesis), that for n 6= 0, 4, 7 mod 8, the points

(1.4) Ê(n) := 1√
n
E(n) ⊂ S2

obtained by projecting to the unit sphere, become equidistributed on the
unit sphere with respect to σ̂ as n → ∞. This was proved unconditionally
by Duke [4, 5] and Golubeva and Fomenko [8], following a breakthrough by
Iwaniec [11]. Random points are equidistributed by definition and the above

result says that on this crudest global scale the projected lattice points Ê(n)
behave like random points. Figure 1 gives some visual support for random

behaviour of Ê(n).

random integer rigid

Figure 1. Lattice points coming from the prime n =
1299709 (center), versus random points (left) and rigid points
(right). The plot displays an area containing about 120
points.

To make this precise we examine various statistics associated with the
placement of points in S2. Our choice of these statistics is based on ro-
bustness tests for the random hypothesis, as well as quantities which are
of interest in number theoretical and harmonic analysis applications. Our
philosophy in what follows is that the behaviour of a quantity in question is

easy to determine for random points while for Ê(n) we settle for estimates
for them and also formulate conjectures, which are more precise. That one
has to settle for such information for this kind of problem is to be expected
given the problematic non-random behaviour of the number Nn itself.

1.1. Electrostatic energy. The electrostatic energy ofN points P1, . . . , PN

on S2 is given by

(1.5) E(P1, . . . , PN ) :=
∑

i 6=j

1

|Pi − Pj |
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E −N(N − 1)

N integer random

1224 −282. 95.

3072 37732. −4704.

4296 8380. 1747.

Table 1. The difference E − N(N − 1) between the elec-
trostatic energy and its expected value, for various values of

N . In the column labeled “integer”, the energy for Ê(n) was
computed for the primes n = 104773, 104761 and 1299763
with Nn listed in the left-most column. In the random case
the result is a mean value of 20 runs.

This energy E depends on both the global distribution of the points as well
as a moderate penalty for putting the points too close to each other. The
minimum energy configuration is known to satisfy [21, 22, 1]

(1.6) N2 − βN3/2 ≤ min
P1,...,PN

E(P1, . . . , PN ) ≤ N2 − αN3/2

for some 0 < α ≤ β < ∞. The configurations which achieve this are rigid
in various senses [3] and we will see below in Corollary 1.5 that our points

Ê(n) are far from being rigid. For random points one has1 that E ∼ N2 but
that E − N(N − 1) has no definite sign. Our first result is that to leading

order the points Ê(n) have the same energy as the above.

Theorem 1.1. There is some δ > 0 so that

(1.7) E(Ê(n)) = N2 +O(N2−δ)

as n → ∞, n 6= 0, 4, 7 mod 8.

We have not been able to say anything about the sign of E(Ê(n))−N(N−
1) which according to Table 1.1 appears to vary.

1.2. Point pair statistics. The point pair statistic and its variants is at
the heart of our investigation. It is a robust statistic as for as testing the
randomness hypothesis and it is called Ripley’s function in the statistics
literature [18]. For P1, . . . PN ∈ S2 and 0 < r < 2, set

(1.8) K̂r(P1, . . . , PN ) :=
∑

i 6=j
|Pi−Pj |<r

1

1Here and elsewhere, ∼ is the usual asymptotic symbol denoting convergence to one of
the ratio of the two sides.
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to be the number of ordered pairs of distinct points at (Euclidean) distance
at most r apart. For fixed ǫ > 0, uniformly for N−1+ǫ ≤ r ≤ 2, one has that
for N random points (the binomial process)

(1.9) K̂r(P1, . . . , PN ) ∼ 1

4
N(N − 1)r2

Based on the results below as well as some numerical experimentation,

we conjecture that for n square-free the points Ê(n) behave randomly w.r.t.
Ripley’s statistic at scales N−1+ǫ

n ≤ r ≤ 2; that is

(1.10) K̂r(Ê(n)) ∼
N2r2

4
, as n → ∞ .

One of our main results is the following which shows that (1.10) is true
at least in terms of an upper bound which is off only by a multiplicative
constant.

Theorem 1.2. Assume the Generalized Riemann Hypothesis (GRH). Then
for fixed ǫ > 0 and N−1+ǫ ≤ r ≤ 2,

K̂r(Ê(n)) ≪ǫ N
2r2

where the implied constant depends only on ǫ.

Remark: We do not need the full force of GRH here, but rather that there
are no “Siegel zeros”.

We have not succeeded in giving individual lower bounds for K̂r(Ê(n)),
what we can show is that at the smallest scale (1.10) holds for most n’s.

Theorem 1.3. There is some δ0 > 0 such that for fixed 0 < δ < δ0 and

r = nδ− 1

2 ,

K̂r(Ê(n)) ∼
N2r2

4
for almost all n.

1.3. Nearest neighbour statistics. Closely connected to K̂ is the distri-
bution of nearest neighbour distances dj , i. e. the distance from Pj to the
remaining points. Area considerations show that

∑
j d

2
j ≤ 16. It is more

convenient to work with these squares of the distances. In order to space
these numbers at a scale for which they have a limiting distribution in the
random case, we rescale them by their mean for the random case, i.e. replace
d2j by N

4 d
2
j . Thus for P1, . . . , PN ∈ S2 define the nearest neighbour spacing

measure µ(P1, . . . , PN ) on [0,∞) by

(1.11) µ(P1, . . . , PN ) :=
1

N

N∑

j=1

δN
4
d2j

where δξ is a delta mass at ξ ∈ R. Note that the mean of µ is at most 1 and
that for random points we have

(1.12) µ(P1, . . . , PN ) → e−xdx, as N → ∞
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Based on this and numerical experiments (see figure 2) we conjecture:

Conjecture 1.4. As n → ∞ along square-free integers, n 6= 7 mod 8,

(1.13) µ(Ê(n)) → e−xdx .

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

minimal distances for H107
+1L-th prime

Figure 2. A histogram of the scaled minimal spacing be-
tween lattice points for for n = 179424691, the 10, 000, 001-
th prime, where Nn = 94536, and modulo symmetries there
are 1970 points. The smooth curve is the exponential distri-
bution e−s.

As a Corollary to Theorem 1.2 we have

Corollary 1.5. Assume GRH. If ν is a weak limit of the µ(Ê(n)) then ν is
absolutely continuous, in fact there is an absolute constant c4 > 0 such that

(1.14) ν ≤ c4dx

Corollary 1.5 implies that the Ê(n)’s are not rigid for large n since for
rigid configurations, µP1,...,PN

→ δπ/
√
12. Also in as much as it ensures that

such a ν cannot charge {0} positively, it follows that almost all the points

of Ê(n) are essentially separated with balls of radius approximately N−1/2

from the rest. Precisely given a sequence ηN satisfying ηN = o(N−1/2), all

but o(N) of the N points in Ê(n) have the ball of radius ηN about them free
of any other points.

1.4. Minimum spacing and covering radius. Given P1, . . . , PN ∈ S2

define the minimum spacing to be the

(1.15) m(P1, . . . , PN ) := min
i 6=j

di,j = min
j

dj
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This statistic is very sensitive to the placement of points and it is of arith-

metic interest for Ê(n). From the area packing bound we have that

(1.16) m(P1, . . . , PN ) ≤ 4/
√
N

for any configuration. In fact the rigid configuration of Figure 1 maximizes
m asymptotically

(1.17) max
P1,...,PN

m(P1, . . . , PN ) ∼ 2√
N

· 2
√

π√
12

.

For random points the behaviour of the minimal spacing m is very different

(1.18) m(P1, . . . , PN ) = N−1+o(1) .

Based on the random point model as well as number theoretic considera-
tions which involve a nonlinear and shifted variation of Vinogradov’s least
quadratic residue conjecture [20], we pose

Conjecture 1.6. m(Ê(n)) = N−1+o(1) as n → ∞.

The lower bound in Conjecture 1.6 is an immediate consequence of the

integrality of the points in Ê(n) since that implies that for the projected

points Pi 6= Pj ∈ Ê(n), we have |Pi − Pj | ≥ 1/
√
n and since N ≥ n1/2+o(1)

the lower bound follows. It is the upper bound that appears difficult even
assuming GRH.

As with the previous statistics we can establish the conjecture for almost
all n. Indeed it follows from Theorem 1.3 that

Corollary 1.7. Given ǫ > 0, M(Ê(n)) ≪ǫ N
−1+ǫ for almost all n.

Note that Conjecture 1.6 would follow from the stronger conjecture of
Linnik [13], that for ǫ > 0 and n odd and square-free (and n 6= 7 mod 8)
there are x1, x2, x3 with |x3| ≤ nǫ and x21 + x22 + x23 = n.

Finally we examine the covering radius for Ê(n) though there is little of
substance that we can prove. Given P1, . . . , PN ∈ S2, the covering radius
M(P1, . . . , PN ) is the least r > 0 so that every point of S2 is within distance
at most r of some Pj . Again an area covering argument shows that for any

configuration M(P1, . . . , PN ) ≥ 4√
N
.

As a statistic, the covering radius M is much more forgiving than the
minimal spacing m in that the placement of a few bad points does not affect
M drastically. In particular for random points, M ≤ N−1/2+o(1).

Based on this we conjecture the following, though admittedly it is based
on much less evidence than the previous conjectures.

Conjecture 1.8. M(Ê(n)) = N−1/2+o(1) as n → ∞.

An effectivization of the equidistribution of Ê(n) [8, 5] which is needed in

the proof of Theorem 1.1 yields an α > 0 such that M(Ê(n)) ≪ N−α.
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1.5. Higher dimensions. The distribution of the solutions to

(1.19) x21 + x22 + · · · + x2t = n

for t 6= 3 is very different and certainly non-random. Firstly for t = 2 and say
n a prime, n = 1 mod 4, there are exactly eight solutions to (1.19). So there
is little to say about the distribution for individual such n’s. However for
”generic” n’s which are sums of two squares, the projections of the solutions
to the unit circle are uniformly distributed [12, 7], and for such n’s the local
statistical questions certainly make sense.

For t ≥ 4, the projections onto the unit sphere of the solutions to (1.19)
can be examined using the same techniques that we use for t = 3, with the
main differences being that the analysis is easier and the local behaviour
is no longer random. We only discuss the last feature and since it is only
enhanced with increasing t, we stick to t = 4. Let E4(n) be the set of

solutions to (1.19) and let Ê4(n) be the projection of this set to S3, the

unit sphere in R4. The first difference to t = 3 is that N
(4)
n := #Ê4(n) is

a regularly behaved function of n. When divided by 8 it is multiplicative

and for n = p an odd prime #Ê4(p) = 8(p + 1). Thus the number of points

N = N
(4)
n being placed on S3 satisfies

(1.20) N = n1+o(1)

at least for odd n. For N random points on S3 the two point function K̂r

defined as in (1.8) satisfies that for ǫ > 0 and N−2/3+ǫ ≤ r ≤ 2

(1.21) K̂r(P1, . . . , PN ) ∼ N(N − 1)V (r)

where V (r) is the relative volume of a cap {x ∈ S3 : |x− x0| < r}; for small
r, V (r) ∼ 2

3π r
3.

On the other hand for Ê4(n), the integrality of the corresponding points

in E4(n), implies that for x 6= y, |x−y| ≥ 1/
√
n and hence for x 6= y ∈ Ê4(n)

(1.22) |x− y| ≥ N−1/2+o(1)

In particular

(1.23) K̂r(Ê4(n)) = 0, r ≤ N−1/2−ǫ

Thus at the scales N−2/3+ǫ ≤ r ≤ N−1/2−ǫ, the point pair function for Ê4(n)
and that for random points are very different.

This difference is also reflected in the minimum spacing functionm(Ê4(n))
for N points on S3. From (1.22) we have the lower bound m(Ê4(n)) ≥
N−1/2+o(1) and on the other hand there is a similar upper bound, namely

Proposition 1.9.

(1.24) m(Ê4(n)) = N−1/2+o(1) .
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This is in sharp contrast to random points on S3 for which

(1.25) m(P1, . . . , PN ) = N−2/3+o(1)

Thus the points Ê4(n) are much more rigid than random points but they
are far from being fully rigid as the latter satisfy (locally these points are
placed at the vertices of the face centered cubic lattice [2]):

(1.26) max
P1,...,PN

m4(P1, . . . , PN ) ∼ 2

N1/3
c, c =

π2/3

√
2

The nonrandom behaviour of the points Ê4(n) manifests itself at a much
larger scale as well, as is demonstrated by the minimum covering radius
M4(P1, . . . , PN ). While being very nonrigid, random points cover S3 quite
well. For them we have

(1.27) M4(P1, . . . , PN ) = N−1/3+o(1) .

Somewhat surprisingly the points Ê4(n) which are more rigid than random
points, are poorly distributed in terms of covering. This phenomenon of
what might be called “big holes” was first observed in the context of ap-
proximations of 2× 2 real matrices by certain rational ones, by Harman [9].

For Ê4(n) we have

Proposition 1.10.

(1.28) M(Ê4(n)) ≥ N−1/4+o(1) .

2. Outline of the proofs

For n squarefree the general mass formula of Minkowski and Siegel, which
in the following special case is due to Gauss, expresses Nn in terms of
L(1, χdn) where χdn is the quadratic character associated to the fieldQ(

√
−n)

of discriminant dn. From this and Siegel’s lower bound on L(1, χd) it fol-

lows that Nn ≫ n1/2−ǫ for any ǫ > 0 (ineffectively). The key tool in our
analysis of the local point-pair functions is the mass formula applied to the
representations of the binary form nu2 + 2tuv + nv2 by the ternary form
x21 + x22 + x23 = 〈x, x〉. Since this ternary form has one class in its genus
the above, which counts the number A(n, t) of pairs (x, y) ∈ E(n) × E(n)
with 〈x, y〉 = t, is given by a product of local densities. Again this is a
special case of the mass formula, for which an elementary proof as well as
an explicit form was given in [19], and this was a critical ingredient in Lin-

nik’s approach to the equidistribution of Ê(n) (see [6] for a recent exposition
and extension of his method). The local to global formula allows us to give
rather sharp upper bounds for A(n, t). These are then used to control the
contributions of nearby points in the sum (1.5) in the course of proving The-
orem 1.1. For pairs of points that are not too close we use modular forms
and in particular Duke’s theorem. Specifically we effectivise that analysis
by giving a power saving (namely N−α, for some α > 0) upper bound for
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the spherical cap discrepancy of the points Ê(n). Putting these two together
leads to Theorem 1.1.

The proof of Theorem 1.2 also uses the local formula for A(n, t), this time
giving upper bounds for this quantity when summed over t in short intervals.
It is critical that these upper bounds are sharp up to a universal factor and
depend only on the subtle function Nn and not on n. We achieve this by
adapting the upper bound sieve method of Nair [15] to our setting. This
leads to an upper bound in terms of a product of local densities of primes
connected with χdn . It is here that we need to assume that there are no
Siegel zeros in order to ensure that there is no dependence on n.

The almost all result in Theorem 1.3 is proven by computing the as-

ymptotic mean and variance of K̂r(Ê(n)) − N2
nr

2/4, with n ≤ R. This is
approached by analyzing similar asymptotics for

(2.1) Kh(E(n)) =
∑

x,y∈E(n)
x−y=h

1

and

(2.2) Kh,k(E(n)) =
∑

x,y,z,w∈E(n)
x−y=h, z−w=k

1 ,

(0 6= h, k ∈ Z3).
The behaviour as R → ∞ of

∑
n≤R Kh(E(n)) may be determined ele-

mentarily, while that of
∑

h≤RKh,k(E(n)) can be derived using Klooster-

man’s circle method for quadratic forms in 4 variables (see for example
[14], [10]).The leading terms are given as products of Hardy-Littlewood lo-

cal densities. The behaviour of
∑

n≤R K̂r(E(n))Nn and
∑

n≤RN2
n may be

determined using the Besicovich r-almost periodic properties of Nn/
√
n [16].

We rederive this almost periodicity directly using the circle method and this
allows us to compare the various local densities directly.

The proof of Proposition 1.9 is immediate from Legendre and Gauss’
Theorem. Namely n − a2 = x21 + x22 + x23 has a solution for a = 1 or a = 2
(recall n is odd). Proposition 1.10 follows by considering annuli about the
north pole (1, 0, 0, 0).
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